Resolving the Extragalactic y-ray Background

Marco Ajello Clemson University

On behalf of the Fermi-LAT collab.

(with a few additions by Jack)

Ackermann+2015, ApJ, 799, 86 Ajello+2015, ApJL, 800,27 Ackermann+2016, PRL, 116, 151105

Singal 2015, MNRAS, 115,112 Singal+2014, ApJ, 786,109 Singal+2012, ApJ, 753, 45

Fermi: Bigger, Sharper, Faster

Gamma-ray Burst Monitor (GBM)

- 8 keV 40 MeV
- views entire unocculted sky

Large Area Telescope (LAT):

- 100 MeV >>500 GeV
- 2.4 sr FoV (scans entire sky every ~3hrs)

The Gamma-ray Sky as Seen by Fermi

Galactic emission is 2 body process so very highly concentrated in plane Suppressed in halo 20 deg wide patch 1 year, > 1 GeV 20 deg wide patch 5 years, > 1 GeV

Total Extragalactic Gamma-ray Background

Systematic uncertainty from Galactic foreground represented by yellow band

EGB: Why is it important?

Undetected sources

Blazars

Dominant class of LAT extragalactic sources. Many estimates in literature. EGB contribution ranging from 20% - 100%.

Non-blazar active galaxies

27 sources resolved in 2FGL ~ 25% contribution of radio galaxies to EGB expected. (e.g. Inoue 2011)

Star-forming galaxies

Several galaxies outside the local group resolved by LAT. Significant contribution to EGB expected. (e.g. Pavlidou & Fields, 2002, Ackermann et al. 2012)

<u>GRBs</u> High-latitude pulsars

Small contributions expected. (e.g. Dermer 2007, Siegal-Gaskins et al. 2010)

Diffuse processes

Intergalactic shocks

Widely varying predictions of EGB contribution ranging from 1% to 100% (e.g. Loeb & Waxman 2000, Gabici & Blasi 2003)

Dark matter annihilation

Potential signal dependent on nature of DM, cross-section and structure of DM distribution (e.g. Ullio et al. 2002)

Interactions of UHE cosmic rays with the EBL

Dependent on evolution of CR sources, predictions varying from 1% to 100 % (e.g. Kalashev et al. 2009)

Extremely large Galactic electron halo (Keshet et al. 2004)

<u>CR interaction in small solar</u> <u>system bodies</u> (Moskalenko & Porter 2009)

Blazars

- Blazars contribute a grand-total of $(5-7) \times 10^{-6}$ ph cm⁻² s⁻¹ sr⁻¹
 - 1. Blazars produce ~50% of the EGB
 - 2. Blazars + EBL are responsible for the cut-off of the EGB spectrum

- Ways to calculate
 - 1. Use blazar source counts

Advantage: straightforward to determine at fluxes observed

Disadvantage: Unknown below flux cutoff

Flux cutoff is photon energy dependent

2. Use blazar luminosity functions

Advantage: more straightforward to extrapolate Lum fn. down than source counts

Disadvantage: more complicated integration to get total

100 Mev-100 GeV	FSRQs %	BL Lacs %	Total %
Probed	20	10	30
Extrapolated	35 (+35/-9)	17 (+44/-12)	52 (+all/-15)

Ways to calculate

2. Use blazar luminosity functions

$$\Psi_{L\gamma}(L_{\gamma},z) = \rho(z) \times \psi_{L\gamma}(L_{\gamma}) / g_{L\gamma}(z)$$

Singal, Ko, & Petrosian, 2014, *ApJ*, 786, 109 FOR FSRQs

Here FSRQs in toto account for 22(⁺¹⁰/₋₄)% of the EGB in 100 Mev- 100 GeV

• How did we calculate the source counts or luminosity function?

Lynden-Bell method modified with the use of associated sets for truncated data $\Psi_{L_{\gamma}}(L_{\gamma}, z) = \rho(z) \times \psi_{L_{\gamma}}(L_{\gamma})/g_{L_{\gamma}}(z)$

 $\Phi_k(L') = \prod_k \left(1 + \frac{1}{n(k)}\right)$

Cumulative lum. fn. Determined by modified Lynden-Bell (1971, *MNRAS*, 155, 95) modified with associated sets (e.g. Singal et al., 2012, *ApJ*, 764, 43)

Blazars

- Blazars contribute a grand-total of $(5-7) \times 10^{-6}$ ph cm⁻² s⁻¹ sr⁻¹
 - 1. Blazars produce ~50% of the EGB
 - 2. Blazars + EBL are responsible for the cut-off of the EGB spectrum

Star forming galaxies

Star forming Galaxies

• Star-forming galaxies contribute $13\%(\pm 9\%)$ of the EGB

Radio Galaxies

- Fermi has detected 15 radio galaxies (Abdo+10, ApJ 720, 912 and Nolan+12, ApJS, 199, 31)
- A correlation exists between the g-ray and the core luminosity
- Using the Willott+01 Luminosity Function, the contribution to the IGRB is: 25% (+58%/-16%)

Dark Matter Limits

- DM limits reach higher masses due to the high-energy reach (820 GeV) of the EGB measurement
- Decreasing the uncertainties on source contributions can improve the limits by a factor of 5

Summing Everything Up

Conclusion

- Fermi-LAT
 - Among the few instruments able to measure and resolve a cosmic background at the same time
- EGRB:
 - It can be explained entirely (between 100 MeV and 800 GeV) by known source populations
 - Blazars (FSRQs > BL Lacs) > SFGs > Radio Galaxies > DM
- EGRB is an important tool in multi-messenger astrophysics